Anyone who has been surfing the web for a while is probably used to clicking through a CAPTCHA grid of street images, identifying everyday objects to prove that they’re a human and not an automated bot. Now, though, new research claims that locally run bots using specially trained image-recognition models can match human-level performance in this style of CAPTCHA, achieving a 100 percent success rate despite being decidedly not human.

ETH Zurich PhD student Andreas Plesner and his colleagues’ new research, available as a pre-print paper, focuses on Google’s ReCAPTCHA v2, which challenges users to identify which street images in a grid contain items like bicycles, crosswalks, mountains, stairs, or traffic lights. Google began phasing that system out years ago in favor of an “invisible” reCAPTCHA v3 that analyzes user interactions rather than offering an explicit challenge.

Despite this, the older reCAPTCHA v2 is still used by millions of websites. And even sites that use the updated reCAPTCHA v3 will sometimes use reCAPTCHA v2 as a fallback when the updated system gives a user a low “human” confidence rating.

  • the post of tom joad
    link
    fedilink
    English
    arrow-up
    10
    arrow-down
    1
    ·
    edit-2
    2 months ago

    Thank God this means i can stop wondering if i should click on the… the 13 pixels from the fucking bike in that one corner square or wondering if i should count the scooter as a motorcycle fuck i am so tired of that shit

    • curry@programming.dev
      link
      fedilink
      English
      arrow-up
      2
      ·
      2 months ago

      Complete the obligatory “is this a staircase or street crossing” round only to be roundhouse kicked back to the beginning.