Day 21: Step

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • hades@lemm.ee
    link
    fedilink
    arrow-up
    2
    ·
    11 months ago

    Python

    The data today has a special property, which allows for a fast solution. This won’t work on other data, including the example data in the problem description.

    1645 line-seconds.

    import collections
    import math
    
    from .solver import Solver
    
    
    class Day21(Solver):
      first_star_steps: int
      second_star_steps: int
      lines: list[str]
    
      def __init__(self):
        super().__init__(21)
        self.first_star_steps = 64
        self.second_star_steps = 26501365
    
      def presolve(self, input: str):
        self.lines = input.splitlines()
    
      def solve_first_star(self) -> int | str:
        positions = {(i, j) for i, line in enumerate(self.lines) for j, c in enumerate(line) if c == 'S'}
        for _ in range(self.first_star_steps):
          next_positions = set()
          for i, j in positions:
            for di, dj in ((-1, 0), (1, 0), (0, -1), (0, 1)):
              if not 0 <= i + di < len(self.lines):
                continue
              if not 0 <= j + dj < len(self.lines[i]):
                continue
              if self.lines[i + di][j + dj] == '#':
                continue
              next_positions.add((i + di, j + dj))
          positions = next_positions
        return len(positions)
    
      def solve_second_star(self) -> int:
        positions = {(i, j) for i, line in enumerate(self.lines) for j, c in enumerate(line) if c == 'S'}
        modulus = self.second_star_steps % len(self.lines)
        points_to_extrapolate = (modulus, modulus + len(self.lines), modulus + len(self.lines) * 2)
        values = []
        for step_count in range(modulus + len(self.lines) * 2 + 1):
          if step_count in points_to_extrapolate:
            values.append(len(positions))
          next_positions = set()
          for i, j in positions:
            for di, dj in ((-1, 0), (1, 0), (0, -1), (0, 1)):
              ni = i + di
              nj = j + dj
              if self.lines[ni % len(self.lines)][nj % len(self.lines)] == '#':
                continue
              next_positions.add((ni, nj))
          positions = next_positions
        a = (values[2] - values[1] *2 + values[0]) // 2
        b = values[1] - values[0] - 3 * a
        c = values[0] - b - a
        cycles = math.ceil(self.second_star_steps / len(self.lines))
        return a * cycles * cycles + b * cycles + c