In this work, we propose Retentive Network (RetNet) as a foundation architecture for large language models, simultaneously achieving training parallelism, low-cost inference, and good performance. We theoretically derive the connection between recurrence and attention. Then we propose the retention mechanism for sequence modeling, which supports three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent. Specifically, the parallel representation allows for training parallelism. The recurrent representation enables low-cost O(1) inference, which improves decoding throughput, latency, and GPU memory without sacrificing performance. The chunkwise recurrent representation facilitates efficient long-sequence modeling with linear complexity, where each chunk is encoded parallelly while recurrently summarizing the chunks. Experimental results on language modeling show that RetNet achieves favorable scaling results, parallel training, low-cost deployment, and efficient inference. The intriguing properties make RetNet a strong successor to Transformer for large language models. Code will be available at this https URL.

  • Yahma
    link
    fedilink
    English
    arrow-up
    2
    ·
    2 年前

    Its about time we start looking into alternatives to the transformer model. We are starting to come up on the limits of what is capable with local hardware and there are obvious missing components to the transformer model.

    • Kerfuffle
      link
      fedilink
      English
      arrow-up
      2
      ·
      2 年前

      Its about time we start looking into alternatives to the transformer model.

      People have been looking into alternatives. If you read the paper, you can see that they compare their approach to a bunch of different alternatives/modifications. Naturally they claim it comes out looking very favorable, but we’ll have to wait and see if the models/code they release actually perform as well as they’re saying and non-obvious downsides.

      It’s not an easy thing to get right.

    • noneabove1182OPM
      link
      fedilink
      English
      arrow-up
      1
      ·
      2 年前

      yup especially with all these quadratic scalings, we need to break away from it