Fuck this shit, why does every fucking thing need an LLM?

  • GolfNovemberUniform@lemmy.ml
    link
    fedilink
    arrow-up
    6
    arrow-down
    8
    ·
    6 months ago

    Still you can’t improve it that much. It’s like blockchain. Computers always consume a lot of power, no matter how efficient they are.

    • FaceDeer@fedia.io
      link
      fedilink
      arrow-up
      9
      arrow-down
      1
      ·
      6 months ago

      Funny you should mention blockchains. Ethereum, the second-largest blockchain after Bitcoin, switched from proof-of-work to a proof-of-stake validation system two and a half years ago. That cut its energy use by 99.95%. The “blockchains are inherently a huge waste of energy” narrative is just firmly lodged in the popular view of them now, though, despite it being long proven false.

      • GolfNovemberUniform@lemmy.ml
        link
        fedilink
        arrow-up
        2
        arrow-down
        5
        ·
        6 months ago

        But that’s really good! And also means that cloud based AI is even worse than blockchain in terms of environmental impact.

        • FaceDeer@fedia.io
          link
          fedilink
          arrow-up
          6
          ·
          edit-2
          6 months ago

          It means that even if AI is having more environmental impact right now, there’s no reason to say “you can’t improve it that much.” Maybe you can improve it. As I said previously, a lot of research is being done on exactly that - methods to train and run AIs much more cheaply than it has so far. I see developments along those lines being discussed all the time in AI forums such as /r/localllama.

          Much like with blockchains, though, it’s really popular to hate AI and “they waste enormous amounts of electricity” is an easy way to justify that. So news of such developments doesn’t spread easily.

    • lmaydev@lemmy.world
      link
      fedilink
      arrow-up
      4
      ·
      edit-2
      6 months ago

      You can improve it hugely. These things are very young.

      There was a paper recently about removing the need for matrix multiplication from them which is a hugely expensive operation.

      Dedicated hardware is also at a very early stage.