- cross-posted to:
- [email protected]
- [email protected]
- cross-posted to:
- [email protected]
- [email protected]
Apple quietly introduced code into iOS 18.1 which reboots the device if it has not been unlocked for a period of time, reverting it to a state which improves the security of iPhones overall and is making it harder for police to break into the devices, according to multiple iPhone security experts.
On Thursday, 404 Media reported that law enforcement officials were freaking out that iPhones which had been stored for examination were mysteriously rebooting themselves. At the time the cause was unclear, with the officials only able to speculate why they were being locked out of the devices. Now a day later, the potential reason why is coming into view.
“Apple indeed added a feature called ‘inactivity reboot’ in iOS 18.1.,” Dr.-Ing. Jiska Classen, a research group leader at the Hasso Plattner Institute, tweeted after 404 Media published on Thursday along with screenshots that they presented as the relevant pieces of code.
When you first boot up a device, most data on that device is encrypted. This is the Before First Unlock (BFU) state. In order to access any of that data, someone must enter the passcode. The Secure Enclave uses it to recreate the decryption keys that allow the device to access that encrypted data. Biometrics like Face ID and Touch ID won’t work: they can’t be used to recreate the encryption keys.
Once you unlock the device by entering the passcode the device generates the encryption keys and uses them to access the data. It keeps those keys in memory. If it didn’t, you’d have to enter your passcode over and over again in order to keep using your device. This is After First Unlock (AFU) state.
When you’re in AFU state and you lock your device, it doesn’t throw away the encryption keys. It just doesn’t permit you to access your device. This is when you can use biometrics to unlock it.
In some jurisdictions a judge can legally force someone to enter biometrics, but can’t force them give up their passcode. This legal distinction in the USA is that giving a passcode is “testimonial” because it requires giving over the contents of your mind, and forcing suspects to do that is not legal in the USA. Biometrics aren’t testimonial, and so someone can be forced to use them, similar to how arrested people are forced to give fingerprints.
Of course, in practical terms this is a meaningless distinction because both biometrics and a passcode can grant access to nearly all data on a device. So one interesting thing about BFU vs AFU is that BFU makes this legal hair-splitting moot: biometrics don’t work in BFU state.
But that’s not what the 404 Media articles are about. It’s more about the forensic tools that can sometimes extract data even from a locked device. A device in AFU state has lots of opportunities for attack compared to BFU. The encryption keys exist, some data is already decrypted in memory, the lightning port is active, it will connect to Wi-Fi networks, and so on. This constitutes a lot of attack surface that hackers could potentially exploit to pull data off the device. In BFU state, there’s very little data available and almost no attack surface. Automatically returning a device to BFU state improves resistance to hacking.
Fun fact: in Australia we don’t have a bill of rights of any kind, so the cops can just force you to reveal your passwords. The maximum penalty for refusing is 2 years imprisonment.
Umm I forgot.
To the ASIO agent assigned to tracking my every online move:
wtf
what!
Small comfort: they still can’t physically force you like they can with biometrics.
Honestly, as an american, I could live with watered down rights if it meant a more representative government
Oh yeah, just don’t read about what happens to our prime ministers when they attempt to defy the empire. Totes democracy we got over here.
Also, in the BFU state, iPhones at least, won’t allow any data connections through USB
It’s more complicated than that. It’s called USB restricted mode. The lightning port is always willing to do a minimal subset of the protocols that it supports in order to do smart charging. By default most of the protocols it supports are disabled in BFU state. In AFU state it gets more complex than that. Accessories that you’ve previously connected can connect for one hour after the device is locked. This helps keep USB restricted mode from being really annoying if you briefly disconnect and reconnect an accessory.
USB restricted mode can be disabled by a user option (Settings > [Touch / Face] ID & Passcode > Allow Access When Locked > Accessories) or by a configuration profile. Disabling it allows accessories to connect at any time, and generally lowers the security of your device. But in some cases that’s necessary, for instance when you use an accessibility accessory to use your device.
If USB restricted mode is a concern for you, you should consider Lockdown Mode (Settings > Privacy & Security > Lockdown Mode). This changes several settings on your device to make it much more resilient to attack.
Very informative. Thank you.
You mentioned the lightning port. Is there any difference with the newer phones with USB-C when it comes to these functions?
I’m glad you find this informative. It’s a topic that’s important to me both personally and professionally, and there’s a lot of wrong information out there. But the best and most reliable info is in the Apple Platform Security Guide, such as Activating data connections securely and Direct memory access protections for Mac computers.
In this topic I don’t think there’s any important difference between USB-C and lightning. Both form factors support a bunch of USB protocols as well as some Apple-only protocols, and both have USB restricted mode.
Great explanation. That was super insightful.
So even with BFU, does the iPhone not connect to the internet? I guess i hadn’t noticed it doesn’t.
Also are you still about to track via gps an iPhone that is in the off state? Just curious if there’s a lot of other vectors where the iPhone is still connected?
Well, it’s complicated. Most of these topics are. In BFU state, an iPhone (or iPad with cellular) with an active SIM and active data plan will connect to the Internet. It won’t connect to Wi-Fi at all. If you have USB restricted mode disabled and the right accessory connected it will connect to an Ethernet network, but that may fail if the network requires 802.1x and the credential is not available in BFU state. Similarly if USB restricted mode is disabled you can use tethering to a Mac to share its network.
For location, there’s two mechanisms. One mechanism relies on directly communicating with the device, which only works if the device has network.
The other mechanism is the “FindMy network” which uses a Bluetooth low energy (BTLE) beacon to let other nearby devices detect it, and they report that to FindMy. It’s a great technology. The way it uses rotating IDs preserves your privacy while still letting you locate your devices. I know that this works when a device is powered off but the battery is not completely dead. I’m not sure if it works in BFU state… my guess it that it does work. But this is not networking. It’s just a tiny Bluetooth signal broadcasting a rotating ID, so it’s one-way communication.
Other than that, I’m not as sure how things work. I believe Bluetooth is disabled by default in BFU state, but I suspect users can choose to re-enable Bluetooth in BFU state to connect to accessibility accessories. I’m not sure about the new emergency satellite communication.
But one thing I know for sure is that Apple has world class security engineers, and one area they work hard to secure is devices in BFU state.
Wow ya that’s a lot of stuff to have to keep track of. Those security engineers are something else. I thought software security was already complex but iPhones or any phones sounds like its even more so