It all comes down to definitions. First off, Totally Ordered is a property of the function that compares two elements not the set you are talking about. most sets have total orderings (if the axiom of choice is true then all sets have a total ordering). With Fields and vectorspaces there is the concept of a totally ordered Field which is essentially when the total ordering is compatible with it’s field operations (e.g the set of complex numbers has many total orderings, but the field of complex numbers is not an ordered field).
So it really depends on how we define the sexuality spectrum. So long as it’s simply a set then it has a total ordering. But if we allow us to add and multiply the gays then depending on how we define those functions it could be impossible to order the gay field.
Also a total ordering doesn’t mean that there is exactly 1 maximal element (it would need to be a strict total ordering to have that property), so we can all be the gayest.
I think that same as you can’t get an arbitrarily accurate measurement of length, since at sub-atomic scales you can no longer perfectly define where exactly an object ends (and eventually you’ll reach planck scales and quantum foam and the task becomes even more impossible), it might not be possible to measure gayness with enough accuracy to decide between the most gay contenders. Let’s be real - gayness is probably extremely fuzzy if you look into it closely.
It all comes down to definitions. First off, Totally Ordered is a property of the function that compares two elements not the set you are talking about. most sets have total orderings (if the axiom of choice is true then all sets have a total ordering). With Fields and vectorspaces there is the concept of a totally ordered Field which is essentially when the total ordering is compatible with it’s field operations (e.g the set of complex numbers has many total orderings, but the field of complex numbers is not an ordered field).
So it really depends on how we define the sexuality spectrum. So long as it’s simply a set then it has a total ordering. But if we allow us to add and multiply the gays then depending on how we define those functions it could be impossible to order the gay field.
Also a total ordering doesn’t mean that there is exactly 1 maximal element (it would need to be a strict total ordering to have that property), so we can all be the gayest.
There could also be an elite group of the gayest people on earth. Or it could just be 2 gay lords.
I think that same as you can’t get an arbitrarily accurate measurement of length, since at sub-atomic scales you can no longer perfectly define where exactly an object ends (and eventually you’ll reach planck scales and quantum foam and the task becomes even more impossible), it might not be possible to measure gayness with enough accuracy to decide between the most gay contenders. Let’s be real - gayness is probably extremely fuzzy if you look into it closely.
Gay field… A word I never imagined will encounter in my life