• 13 Posts
  • 31 Comments
Joined 1 year ago
cake
Cake day: July 2nd, 2023

help-circle
  • All video codecs are lossy, meaning you will lose some quality. AV1 and H.265 are modern video codecs with the best quality to bitrate ratios, meaning you can get better quality for the same bitrate, or the same quality with a lower bitrate. The downside the these codecs is that they are very complex and computational expensive to do in software. You’ll want to make sure your GPU supports hardware encoding for the codecs you intend to record with. The reason most people will recommend AV1 over H.265 is that AV1 is royalty free. With H.265, companies have to pay a royalty to use H.265. Because of this, most companies (Netflix, YouTube, Facebook, Twitch, etc.) want to use AV1 going forward, meaning in the near future, it will probably be the dominant codec.








  • No. Modern SSDs are quite sophisticated in how they handle wear leveling and are, for the most part, black boxes.

    SSDs maintain a mapping of logical blocks (what your OS sees) to physical blocks (where the data is physically stored on the flash chips). For instance, when your computer writes to the logical block address 100, the SSD might map that to a physical block address of 200 (this is a very simplified). If you overwrite logical block address 100 again, the SSD might write to physical block address 300 and remap it, while not touching the data at physical block address 200. This let’s you avoid wearing out a particular part of the flash memory and instead spread the load out. It also means that someone could potentially rip the flash chips off the SSD, read them directly, and see data you thought was overwritten.

    You can’t just overwrite the entire SSD either because most SSDs overprovision, e.g. physically have more storage than they report. This is for wear leveling and increased life span of the SSD. If you overwrite the entire SSD, there may be physical flash that was not being overwritten. You can try overwriting the drive multiple times, but because SSDs are black boxes, you can’t be 100% sure how it handles wear leveling and that all the data was actually overwritten.




  • I feel like lightning rods are going to be needed on this planet to protect your factory, but you will also be able to use them to generate electricity. The alien ruins are also interesting. I wonder if they will be required for research on this planet, as in you need to explore a little and find/fix an alien research building, or deconstruct them for artifacts. I also wonder what kinds of enemies you might find here? Ancient, self-replicating robots defending their long-gone masters from foreign invaders you?




  • Micay stepped down as lead developer and foundation director. I’m not sure what role he has with the project currently, but it seems like he plans on leaving the project entirely, long term. I haven’t heard of any controversy since then. They’ve been hard at work and actually added support for Android Auto last month.


  • It’s been a while since I took statistics, but yes, I guess that is a binomial distribution. It does not influence the results in the way you are implying it does, though. The calculator does actually account for it (the Population Proportion input), and the sample size actually decreases the lower/higher your proportion is. My point was that a question like, “Do you watch anime weekly,” is not like a question like, “How many hours of anime do you watch in a week,” where you certainly couldn’t assume a normal distribution for the number of hours watched.




  • So many great changes I’m looking forward to using in the new update! Being able to flip oil refineries and chemical plants is a huge QoL upgrade for making compact, tileable designs. If I need to scale a refinery/chemical pipeline hotizontally, I can just copy it, flip it, and butt the inputs or outputs together.

    Setting assembler recipes with the circuit network seems more powerful (and complicated, seen by the number of combinators) than most players will ever use, but that’s why I love this game. I think it’s really funny how the devs went from, “Parametized blueprints might be too complicated for players,” to, “just build a finite state machine out of logic gates to control your assembly machines.” I’m really looking forward to seeing what other people are capable of doing with this. I’ll have to dust off my notes from my digital logic classes before I have a go at it.

    P.S. The devs totally missed the chance to make a Missy Elliott reference: “I put my thing down, flip it and reverse it.”






    • SLC -> Single-Level Cell, i.e. 1 bit per cell
    • MLC -> Multi-Level Cell, i.e. 2 bits per cell
    • TLC -> Triple-Level Cell, i.e. 3 bits per cell
    • QLC -> Quad-Level Cell, i.e. 4 bits per cell

    The more bits per cell you store, the more dense and therefore cheaper your flash chips can be for a give capacity. The downside is that it is slower and less reliable since you have to be able to write and read exponentially more voltage states per cell, e.g. 2 states for SLC, 4 states for MLC, 8 states for TLC, etc.





  • Scholars_Mate@lemmy.worldtoLinux@lemmy.mlSystemd timer unit
    link
    fedilink
    English
    arrow-up
    15
    ·
    edit-2
    11 months ago

    the timer has no idea if it was triggered during last boot. It only has the context of “this” boot, so it will do it right after a reboot and set a timer to start the service again after a week of uptime.

    This is not correct. Persistent=true saves the last time the timer was run on disk. From the systemd.timer man page:

    Takes a boolean argument. If true, the time when the service unit was last triggered is stored on disk. When the timer is activated, the service unit is triggered immediately if it would have been triggered at least once during the time when the timer was inactive.

    OP needs to remove Requires=backup.service from the [Unit] section so it stops running it when it start the timer on boot.