• wolframhydroxide
    link
    fedilink
    English
    arrow-up
    3
    arrow-down
    1
    ·
    3 hours ago

    Let’s be clear, the only reason grid-level storage for renewables “doesn’t exist” is because of a lack of education about (and especially commitment to) simple, reliable, non-battery energy storage such as gravitational potential, like the ARES project. We’ve been using gravitational potential storage to power our mechanisms since Huygens invented the freaking pendulum clock. There is simply no excuse other than corruption for the fact that we don’t just run a couple trains up a hill when we need to store massive amounts of solar energy.

    • Tar_Alcaran
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      58 minutes ago

      There is simply no excuse other than corruption for the fact that we don’t just run a couple trains up a hill when we need to store massive amounts of solar energy.

      How about basic maths? I

      Scale is a huge fucking issue. The little country of the Netherlands, where I happen to live, uses 2600 petajoule per day. So let’s store 1 day of power, at 100% efficiency, using the tallest Alp (the Mont Blanc).

      Let’s round up to 5000 meters of elevation. We need to store 2.6e18 joules, and 1 joule is 100 grams going up 1 meter. So to power a tiny little country, we need to lift roughly 5e13 kilos up the Mont Blanc. To visualize, that’s 1.7 billion 40ft shipping containers, or roughly 100 per inhabitant.

      Using 555m blocks of granite, you’d need 166 million of them (9 for every person in the country). Assuming a 2% slope, you’d need to build a 250.000m long railway line. And if you lined all those blocks up, with no space in between, you’d need 3328 of those lines (which then couldn’t move, because they fill the entire space between the summit and sea level).

      And that’s just 1 small country.