That’s a paraphrase of a famous Bertrand Russell quote. The original is as follows; “The trouble with the world is that the stupid are cocksure and the intelligent are full of doubt.”
There’s also the William Butler Yeats corollary; “The best lack all conviction, while the worst are full of passionate intensity.”
And Aristotle was worshipped to the point where if people knew from personal experience that something he said was wrong, they’d assume their own experience was what was mistaken. And this despite him not having any connection to their religion at all.
One example is that they used to think that objects could only have one force acting on it at a time. This could be the “natural force”, which is what makes objects fall when you drop them, or forces resulting from an action being performed on it. As a result, projectiles would travel straight in the direction they were thrown until the natural force took over, at which point they would fall vertically. Somehow this was still popularly believed (by academics at least) well after the catapult had been invented and used in sieges for centuries. It was believed by people who could throw things and observe how they moved with their own eyes.
The Bible says something about the earth and how it is good and the filament of the sky and something. The Bible that is, at least that’s what I read on the internet. Many fine people on the internet, the best people, but not me, I haven’t said it, but the best people probably. The best people say the earth may be - and I’m not saying it is but they are saying it - they say that the earth may be flat and that doesn’t take much text to cover I have heard.
If you squint a little, the 7 days of creation in Genesis are relativistic-ish. 1 day to separate light from darkness (photons at 1 microsecond after Big Bang), another to create the sky (opaque universe at 370k years), another to form dry land and create life (earth formed, 9.3 billion years, life at ~0.2by later), etc etc. Anyone with a physics degree able to say what fraction of light speed god must have been travelling to make this happen such that only days passed for them between these events?
You stated “this has been always true” to the statement that we have understanding that things are really complex and difficult to figure out. The answer to you was an example that there were times where we did not have such understanding.
The Bible also isn’t meant to be real. It’s a compendium of stories all put into one book, with tons of different writers. It’s akin to The Odyssey and shouldn’t be taken literally. Zeus didn’t come to Earth as a golden shower to impregnate Danae, and Jesus didn’t come back from the dead. They’re just fables.
If your point was that religions have oversimplified complex science to the point that people thought they fully grasped it, then I agree with you. Otherwise I have no idea what you are trying to say.
Not really. It’s all about models - we have for normal stuff, but it breaks apart in extreme situations
So clearly the model is fundamentally wrong… Which is pretty cool, because it means FTL travel, antigravity, or travel between dimensions could be possible
But we know now normal shit acts - we have models that work perfectly for 99% of all situations, and we’re probably not going to stop using them. We understand what happens when you throw an object, and it’s a basic equation up until like mock-2 or 3, where our models stop working and we have to switch them out completely
Can you build a model that works for both? Absolutely. It’ll be closer to the truth even. But it’ll be way more complicated for nearly all practical, human scale situations
At the end of the day, a model that describes reality exactly is almost useless… Without simplifications to ignore everything not relevant, just trying shit live would be easier than calculating the prediction
What I don’t understand is if the goal is to eventually be able to model everything perfectly, if we achieve that goal, doesn’t that just mean entropy is a lie?
Maybe it’s not a well thought out idea… But to me, if you can accurately model to predict everything down to the subatomic levels then where is the entropy?
I’m not sure how to answer exactly, so here’s a brain dump of my understanding of entropy
Entropy is basically the tendency of energy to equalize into a lower energy state, converting a portion of the difference into heat, a portion of which escapes into the universe. It’s a statistical thing - it’s a general tendency that becomes predictable at the huge number of particles involved in anything near the human scale. Like compressed air - every atom is moving at a certain speed in a random direction (we model this with temperature)
If you pop a balloon, the air rushes out because there’s more stuff to bounce off in the area of the balloon being popped, and less in the less dense surroundings. So, on average, the air bounces outwards, and the pressure (another model describing density + kinetic energy) equalizes.
Now, if you have liquid air that is being actively cooled, air molecules bouncing in are going to transfer energy into the liquid, and be captured. The liquid is also going to heat up a bit, and the hotter it is, the more molecules are going to fly out. We usually model this with temperature + pressure, but gravity plays a big role too.
So normally, entropy likes to average things out and prefers randomness - it applies to all sorts of things, like how potential chemical energy likes to be released into kinetic energy over time.
But then look at the Earth - we have pressure waves in the air constantly. We say that’s because energy is being added to the system via heat from the sun, and it can even create these systems that turn these pressure waves into vortexes that can make ice in a hot place
And then you look at stars - diffusion finally clicked for me after I sat in on a physics class explaining pulsars. They pulse out through this random diffusion, then pulse in due to gravity pulling them back in.
Then we can look even further - stars pour out energy through fusion, and scatter themselves far and wide, seeding the next generation of stars. We thought that was just the initial energy of the big bang converting to lower energy states, but then you have dark matter and energy that we invented to explain the gap in the models… Now we think maybe the laws of physics might be less universal than we thought, or maybe higher dimensions are interacting with the universe
Entropy is just another model - things generally transition to lower energy states, and convert their energy to heat… But there’s endless cycles that do the opposite. Entropy is a pretty compelling tendency in a closed system, but those don’t actually exist - it could be that there’re larger and larger cycles that oscillate between local entropy and the generation of local regions of higher energy
Entropy doesn’t disappear if we can nail it down the subatomic - it’s just statistical behavior of. It might disappear if we go the other direction - what if every black hole spawns a new universe? Can you just go down the rabbit hole infinitely, creating smaller and smaller energy differentials through new universes? Maybe if we get deeper into quantum mechanics we’ll find that infrared energy spontaneously transitions into hydrogen, which forms into new stars, keeping the cycle going forever
Entropy is a very useful model though, maybe it disappears over large enough scales, but ultimately it most certainly exists on a local level - complex, dynamic things will break down to form simpler things, and energy temporarily reverses this process, but in doing so a portion is converted to heat, and a differential is required to turn heat energy into something more complex like electricity or chemical energy
So practically, I’d say the answer to your question is no, entropy is a very useful model regardless of what more we might learn, but in a truer sense who knows? We don’t understand physics nearly as well as we think.
I think there’s a new wave of physics that will break a lot of our assumptions over the coming decades - we’re finding more and more gaps in our models, which is a very exciting thing
The trick is that the more closely you model things the more energy you need to expend to compute the model, and a computer can not perfectly model itself (it’s a data compression limit + zeno-like process overhead), so therefore you still increase unmodeled unknown entropy somewhere even if you have one closed system carefully controlled
Not really, OP’s image is somewhat misleading. The truth is that we’re constantly trying to improve our understanding of physics and some theories are not completely correct but they often provide a way for future scientists to dig deeper and figure it out. Then with new knowledge, new hypothesis can be suggested creating a gateway to deeper understanding of some concepts further down the timeline.
Actually, we know everything there is happening in solar system. What we don’t know requires energies or distances or times incomparable with human life.
We don’t know why space spawns. We don’t know why the sun’s corona is hotter than its surface. We don’t know why the sun spins faster around its equator than at its poles. We don’t know why shampoo makes strange squiggles when being poured out of its bottle. Just four things off the top of my head.
That’s the point. It’s not accurate that we always knew how complex these were. The more we learn, the more we learn how complex these things are. The example of spiritual explanations is the most reductive and frankly that is where our understanding started. This conversation has really devolved here in typical Lemmy fashion.
So, basically, we don’t know that much on anything besides understanding it’s really complex and difficult to figure out.
This has always been true.
To quote someone a lot wiser than myself:
That’s a paraphrase of a famous Bertrand Russell quote. The original is as follows; “The trouble with the world is that the stupid are cocksure and the intelligent are full of doubt.”
There’s also the William Butler Yeats corollary; “The best lack all conviction, while the worst are full of passionate intensity.”
“Ignorance is bliss.”
No, before the scientific method was invented, the religious consensus was that “All is known”.
“It’s all written down in this here book.”
And Aristotle was worshipped to the point where if people knew from personal experience that something he said was wrong, they’d assume their own experience was what was mistaken. And this despite him not having any connection to their religion at all.
One example is that they used to think that objects could only have one force acting on it at a time. This could be the “natural force”, which is what makes objects fall when you drop them, or forces resulting from an action being performed on it. As a result, projectiles would travel straight in the direction they were thrown until the natural force took over, at which point they would fall vertically. Somehow this was still popularly believed (by academics at least) well after the catapult had been invented and used in sieges for centuries. It was believed by people who could throw things and observe how they moved with their own eyes.
No it hasn’t. Many religions and spiritual texts covered all this stuff in just a couple of pages.
Please do show the spiritual texts which cover general and specific relativity.
The Bible says something about the earth and how it is good and the filament of the sky and something. The Bible that is, at least that’s what I read on the internet. Many fine people on the internet, the best people, but not me, I haven’t said it, but the best people probably. The best people say the earth may be - and I’m not saying it is but they are saying it - they say that the earth may be flat and that doesn’t take much text to cover I have heard.
Removed by mod
If you squint a little, the 7 days of creation in Genesis are relativistic-ish. 1 day to separate light from darkness (photons at 1 microsecond after Big Bang), another to create the sky (opaque universe at 370k years), another to form dry land and create life (earth formed, 9.3 billion years, life at ~0.2by later), etc etc. Anyone with a physics degree able to say what fraction of light speed god must have been travelling to make this happen such that only days passed for them between these events?
Maybe they’re days on a logarithmic scale?
Removed by mod
Removed by mod
Rabbinical scholars argue about the correct translation of Genesis to this day. So you saying they’re “literal days” is meaningless.
Removed by mod
Removed by mod
I too can spout religious gibberish.
You are missing the point. The creation myths were considered complete. Nothing left to be known.
Well yes, people who believe things that aren’t true won’t admit that they don’t know anything. I’m not sure why that’s relevant though.
You stated “this has been always true” to the statement that we have understanding that things are really complex and difficult to figure out. The answer to you was an example that there were times where we did not have such understanding.
…
Not the exact same things throughout human history.
I think their actual point was that incomplete explanations are nonetheless explanations. Still wrong though.
Removed by mod
The Bible also isn’t meant to be real. It’s a compendium of stories all put into one book, with tons of different writers. It’s akin to The Odyssey and shouldn’t be taken literally. Zeus didn’t come to Earth as a golden shower to impregnate Danae, and Jesus didn’t come back from the dead. They’re just fables.
Oh the Bible is definitely meant to explain things. It explains things through a bunch of different world views from different times.
Removed by mod
Removed by mod
Deal if you show me the scientific texts that covered these in 500bc since you think we’ve always know how complex this is.
If your point was that religions have oversimplified complex science to the point that people thought they fully grasped it, then I agree with you. Otherwise I have no idea what you are trying to say.
I never made that claim, so how can I show you something I never claimed in the first place?
Got 'em lol
Not really. It’s all about models - we have for normal stuff, but it breaks apart in extreme situations
So clearly the model is fundamentally wrong… Which is pretty cool, because it means FTL travel, antigravity, or travel between dimensions could be possible
But we know now normal shit acts - we have models that work perfectly for 99% of all situations, and we’re probably not going to stop using them. We understand what happens when you throw an object, and it’s a basic equation up until like mock-2 or 3, where our models stop working and we have to switch them out completely
Can you build a model that works for both? Absolutely. It’ll be closer to the truth even. But it’ll be way more complicated for nearly all practical, human scale situations
At the end of the day, a model that describes reality exactly is almost useless… Without simplifications to ignore everything not relevant, just trying shit live would be easier than calculating the prediction
What I don’t understand is if the goal is to eventually be able to model everything perfectly, if we achieve that goal, doesn’t that just mean entropy is a lie?
Please expound on that.
Maybe it’s not a well thought out idea… But to me, if you can accurately model to predict everything down to the subatomic levels then where is the entropy?
Maybe I don’t understand the basis of entropy.
I’m not sure how to answer exactly, so here’s a brain dump of my understanding of entropy
Entropy is basically the tendency of energy to equalize into a lower energy state, converting a portion of the difference into heat, a portion of which escapes into the universe. It’s a statistical thing - it’s a general tendency that becomes predictable at the huge number of particles involved in anything near the human scale. Like compressed air - every atom is moving at a certain speed in a random direction (we model this with temperature)
If you pop a balloon, the air rushes out because there’s more stuff to bounce off in the area of the balloon being popped, and less in the less dense surroundings. So, on average, the air bounces outwards, and the pressure (another model describing density + kinetic energy) equalizes.
Now, if you have liquid air that is being actively cooled, air molecules bouncing in are going to transfer energy into the liquid, and be captured. The liquid is also going to heat up a bit, and the hotter it is, the more molecules are going to fly out. We usually model this with temperature + pressure, but gravity plays a big role too.
So normally, entropy likes to average things out and prefers randomness - it applies to all sorts of things, like how potential chemical energy likes to be released into kinetic energy over time.
But then look at the Earth - we have pressure waves in the air constantly. We say that’s because energy is being added to the system via heat from the sun, and it can even create these systems that turn these pressure waves into vortexes that can make ice in a hot place
And then you look at stars - diffusion finally clicked for me after I sat in on a physics class explaining pulsars. They pulse out through this random diffusion, then pulse in due to gravity pulling them back in.
Then we can look even further - stars pour out energy through fusion, and scatter themselves far and wide, seeding the next generation of stars. We thought that was just the initial energy of the big bang converting to lower energy states, but then you have dark matter and energy that we invented to explain the gap in the models… Now we think maybe the laws of physics might be less universal than we thought, or maybe higher dimensions are interacting with the universe
Entropy is just another model - things generally transition to lower energy states, and convert their energy to heat… But there’s endless cycles that do the opposite. Entropy is a pretty compelling tendency in a closed system, but those don’t actually exist - it could be that there’re larger and larger cycles that oscillate between local entropy and the generation of local regions of higher energy
Entropy doesn’t disappear if we can nail it down the subatomic - it’s just statistical behavior of. It might disappear if we go the other direction - what if every black hole spawns a new universe? Can you just go down the rabbit hole infinitely, creating smaller and smaller energy differentials through new universes? Maybe if we get deeper into quantum mechanics we’ll find that infrared energy spontaneously transitions into hydrogen, which forms into new stars, keeping the cycle going forever
Entropy is a very useful model though, maybe it disappears over large enough scales, but ultimately it most certainly exists on a local level - complex, dynamic things will break down to form simpler things, and energy temporarily reverses this process, but in doing so a portion is converted to heat, and a differential is required to turn heat energy into something more complex like electricity or chemical energy
So practically, I’d say the answer to your question is no, entropy is a very useful model regardless of what more we might learn, but in a truer sense who knows? We don’t understand physics nearly as well as we think.
I think there’s a new wave of physics that will break a lot of our assumptions over the coming decades - we’re finding more and more gaps in our models, which is a very exciting thing
The trick is that the more closely you model things the more energy you need to expend to compute the model, and a computer can not perfectly model itself (it’s a data compression limit + zeno-like process overhead), so therefore you still increase unmodeled unknown entropy somewhere even if you have one closed system carefully controlled
deleted by creator
Not really, OP’s image is somewhat misleading. The truth is that we’re constantly trying to improve our understanding of physics and some theories are not completely correct but they often provide a way for future scientists to dig deeper and figure it out. Then with new knowledge, new hypothesis can be suggested creating a gateway to deeper understanding of some concepts further down the timeline.
Actually, we know everything there is happening in solar system. What we don’t know requires energies or distances or times incomparable with human life.
We don’t know why space spawns. We don’t know why the sun’s corona is hotter than its surface. We don’t know why the sun spins faster around its equator than at its poles. We don’t know why shampoo makes strange squiggles when being poured out of its bottle. Just four things off the top of my head.
Oh really?
Then I’m sure you can tell us where we can locate Planet 9, or even if Planet 9 exists.
https://astrobiology.nasa.gov/news/the-case-strengthens-for-planet-9/
Easy, it’s right over there. Next question, please
It’s gestures wildly at sky there, of course.
It’s up.
Where space is?
Duh.
maybe whats left of it is our moon?
That’s one of the most confidently idiotic things I’ve read in a hot minute. Congratulations.
It’s actually a pretty decent list of unanswered questions. The more we know the more we learn new questions.
Like why there’s anything at all when the matter and antimatter should have annihilated itself.
Or if there’s positive or negative curvature to space time at the (open or closed universe)
Or what is dark matter and dark energy.
Or unifying quantum physics with general relativity.
And so on.
That’s the point. It’s not accurate that we always knew how complex these were. The more we learn, the more we learn how complex these things are. The example of spiritual explanations is the most reductive and frankly that is where our understanding started. This conversation has really devolved here in typical Lemmy fashion.
Spiritual stuff? Maybe I missed that somewhere? I just saw the blurb in the physics book.
Removed by mod
Removed by mod