The Great Filter is the idea that, in the development of life from the earliest stages of abiogenesis to reaching the highest levels of development on the Kardashev scale, there is a barrier to development that makes detectable extraterrestrial life exceedingly rare. The Great Filter is one possible resolution of the Fermi paradox.
https://en.wikipedia.org/wiki/Great_Filter
The Fermi paradox is the discrepancy between the lack of conclusive evidence of advanced extraterrestrial life and the apparently high likelihood of its existence. As a 2015 article put it, “If life is so easy, someone from somewhere must have come calling by now.”
https://en.wikipedia.org/wiki/Fermi_paradox
Personally I think it’s photosynthesis. Life itself developed and spread but photosynthesis started an inevitable chain of ever-greater and more-efficient life. I think a random chain of mutations that turns carbon-based proto-life into something that can harvest light energy is wildly unlikely, even after the wildly unlikely event of life beginning in the first place.
I have no data to back that up, just a guess.
But surely generational ships would get us over that?
AFAIK there is no known energy source that would keep a generation ship powered for the duration of an interstellar flight.
The person to whom you responded is half right. The speed of light is half of the barrier to interstellar travel. Entropy is the other half.
Would you need a power source? If you aim your ship correctly, then put everything alive into cryo, the ship could go completely dark, vent all heat and become a frozen rock. Then after [very long time] the ship enters the vicinity of a different star and can be reactivated and unfrozen using solar energy. You dont need energy to maintain cryo if the whole ship is at 1° kelvin.
(Of course that relies on cryo sleep being possible)
Or synthetic life. (Robots)
Only if they can be turned off (same as the cryo sleep). The whole ship either has to have enough energy to last potentially 100000 years (no theoretical power source exists like that) or enter a state of 0 energy consumption. Solar/radiation collectors dont work if you are to far from a star. Synthetic life still needs energy
Well, that depends on how far you’re going. If you pick a nice close target, let’s say 3 light years away, you can potentially get there pretty quickly. With fusion propulsion systems you could make the trip is something like 70 years, coasting most of the way. I’d need to check the math to get exact numbers, but I recall fusion allowing for pretty reasonable trip times.
But if you can survive for hundreds or thousands of years, then solar sails become an option. Then it becomes a materials science problem of how thin can you make a sail that will still hold together. The greater the sail to payload ratio, the faster you go.
just reverse entropy
INSUFFICIENT DATA FOR A MEANINGFUL ANSWER
import fuckit && !!
Also, you’d need to know for certain that the planet you’re sending your generation ship to is habitable for your species. While this may be technologically trivial for a society that can build a functional generation ship, the timescales for such projects (literally hundreds or even thousands of years from the launch of the probe to the yes/no signal) makes it extremely difficult to actually organise.
Lol we get to the planet and find it was obliterated by a gamma ray burst 50 years ago
That and you won’t even know if the destination civilization is still there by the time you arrive.
Or just send a lot of ships and hope one or two find something good.
Plus isn’t the rate of expansion of the universe increasing? So at some point, even going at light speed, your destination will recede faster than you can travel.
Not really. Galaxies are pretty stable, stars orbit around the central black hole in the galaxy. You can absolutely travel between stars in the same galaxy, even if it takes a thousand years.
Not really, no. Generational ships might make colonizing the nearest star systems possible, but even colonizing our own galaxy would require some kind of suspended animation. The milky way is between 100,000-200,000 light years in diameter so even at the speed of light, you’re looking at a travel time that is ~33-66% of the time that humanity has even existed(homo sapiens are currently estimated to have become a distinct species 200,000-300,000 years ago)… just to go to ONE star system out of the hundreds of BILLIONS that exist in our galaxy. You’re gonna need generational ships so self-sustaining and capable that the generation that actually arrives at the destination will have long forgotten the point of the trip and might not want to leave the comfort of the ship.
Still, colonizing our own galaxy is at least theoretically possible, given enough time. The real filter is just how unimaginably large the universe is. The vast, VAST majority of the observable universe is FOREVER out of our reach, as it is expanding away from us faster than the speed of light. Then there’s the unobservable universe, which could literally be infinitely bigger than the observable universe for all we actually know.
That’s why faster than light travel is the holy grail. Without it, we’re just kind of stuck.
Imagine if wormholes had zero constraints on the physical location of the other side of the wormhole though. We could open a portal to OUTSIDE the observable universe. What a mindfuck. We might even find a false vacuum decay racing towards us at the speed light, or regions of space that are contracting instead of expanding, or initiate a new big bang by opening a wormhole to an area of space where that hasn’t happened…we could travel to a point where we can watch the milky way get formed, since the light of its formation is just reaching that region of space. If it turns out the heat death of the universe is just a local phenomenon, we could continue expanding forever beyond it. World without end.
Generational ships wouldn’t have to reach the edge of the galaxy, just the next planetary system. There’s no reason civilization needs to remain centered on Earth, either. Think of it as a wave traveling outward, where it eventually reaches the edge, by many smaller hops. It will also eventually reach earth, where they might wonder at signs of a prehistoric civilization. Actually, think of it like the Middle East, where empires rise and fall, crusades and jihads burst through, religions rise out of nowhere, people speak many different languages. A galactic civilization could be dynamic and ever changing, distance can make us strangers to each other, the fate of any planet matter only to its inhabitants and neighbors
Sure, that’s an option. It doesn’t really change my overall point though that anything beyond galactic colonization is unrealistic on any time scale. Our next nearest neighbor, the Andromeda Galaxy, is over 2.5 MILLION light years away, over 10 times farther than my “crossing the milky way” example, with nothing in-between to make a pit stop if needed, you have to cross the true void of space to get there.
And that’s just to get the next nearest galaxy. Current estimates suggest the observable universe contains 2 TRILLION galaxies.
True, you’re not getting to the next galaxy. However within the galaxy, your generation ships only need to work for a century or two per voyage. That’s at least conceivable
Until we figure out how that is possible outside of theory, it is just that. We have no plans that address actually keeping a spaceship working on such a timescale, and keeping the crew alive on top of it.
Considering we haven’t seen any generational alien ships visit, it seems like nobody else has figured it out yet, either.
No. At best maybe a few reach the nearest inhabitable solar system.