• Carighan Maconar@lemmy.world
    link
    fedilink
    English
    arrow-up
    12
    arrow-down
    1
    ·
    1 year ago

    We also had less examples of issues we need to be prepared for.

    One thing people always get wrong is that they assume Fukushima wasn’t build to withstand tsunamis and how stupid that supposedly was. But it was built to withstand tsunamis. Up to 9 meters of height, which was 50% more than the largest one they had on record. And it’s not like they had other projects to look for to figure out that a 50% margin of safety was too little for this. Turns out, it was. So now, you want to build at least 100% margin of error in tsunami areas, something you couldn’t have known before.

    And that’s just one example from one rather specific type of engineering during a construction process that isn’t even specific to nuclear power. And as accidents happen (see for example Admiral Cloudberg’s excellent air crash investigation series!) we figure out more and more things we need to engineer against to prevent this in the future. As a result, what we build nowadays is orders of magnitude safer than what we did in the past. But it also means that building it has become a huge obstacle, if for no other reason than the sheer number of things you need to be aware of, abide by and track during construction and planning.

    • prole
      link
      fedilink
      English
      arrow-up
      7
      ·
      1 year ago

      Fukushima was not a failure of engineering or proper safety measures with construction. It failed because they were old plants that hadn’t been maintained properly and were in disrepair.

      So no, the margin of safety was not too little. The “lesson” learned from the Fukushima Daichi reactor flooding was about proper maintenance and funding.

      • hark@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        ·
        1 year ago

        That’s the fundamental problem with nuclear energy. Where there are corners, they will be cut.